翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

linear optical quantum computing : ウィキペディア英語版
linear optical quantum computing
Linear Optical Quantum Computing or Linear Optics Quantum Computation (LOQC) is a paradigm of universal quantum computation. LOQC uses photons as information carriers, mainly uses linear optical elements including beam splitters, phase shifters, and mirrors to process quantum information, and uses photon detectors and quantum memories to detect and store quantum information.
== Overview of linear optical quantum computation ==

Although there are many other implementations for quantum information processing (''QIP'') and computation, optical quantum systems are prominent candidates for QIP, since they link quantum computation and quantum communication in the same framework. Among the optical systems for quantum information processing, the unit of light in a given mode—or photon—is used to represent a qubit. Superpositions of quantum states can be easily represented, encrypted, transmitted and detected using photons. Besides, linear optical elements of optical systems may be the simplest building blocks to realize quantum operations and quantum gates. Each linear optical element equivalently applies a unitary transformation on a finite number of qubits. The system of finite linear optical elements constructs a network of linear optics, which can realize any quantum circuit diagram or quantum network based on the quantum circuit model. Quantum computing with continuous variables is also possible under the linear optics scheme. The universality of 1- and 2-bit gates to implement arbitrary quantum computation has been proven. Up to N\times N unitary matrix (U(N)) operations can be realized by only using mirrors, beam splitters and phase shifters (footnote: it is also a starting point of Boson sampling and computational complexity analysis for LOQC). It points out that each U(N) operator with N inputs and N outputs can be constructed via \mathcal(N^2) linear optical elements. Based on the reason of universality and complexity, LOQC usually only uses mirrors, beam splitters, phase shifters and their combinations such as Mach-Zehnder interferometers with phase shifts to implement arbitrary quantum operators. If using a non-deterministic scheme, this fact also implies that LOQC could be resource-inefficient in the sense of the number of optical elements and time steps needed to implement a certain quantum gate or circuit, which is a major drawback of LOQC.
Operations via linear optics elements (beam splitters, mirrors and phase shifters, in this case) preserve the photon statistics of input light. For example, a coherent (classical) light input produces a coherent light output; a superposition of quantum states input yields a quantum light state output.〔 Due to this reason, people usually use single photon source case to analyze the effect of linear optics elements and operators. Multi-photon cases can be implied through some statistical transformations.
An intrinsic problem in using photons as information carriers is that photons hardly interact with each other. This potentially causes the scalability problem of LOQC, since nonlinear operations are hard to implement which can increase the complexity of operators and hence can reduce the resources required to realize a given computational function. There are basically two ways to solve this problem. One is to bring in nonlinear devices into the quantum network. For instance, the Kerr effect can be applied into LOQC to make a single-photon controlled-NOT and other operations. It was believed that adding nonlinearity to the linear optical network was sufficient to realize efficient quantum computation. However, to implement nonlinear optical effects is a difficult task. In 2000, Knill, Laflamme and Milburn proved that it is possible to create universal quantum computers solely with linear optics tools.〔 Their work has become known as the KLM scheme or KLM protocol, which uses linear optical elements, single photon sources and photon detectors as resources to construct a quantum computation scheme involving only ancilla resources, quantum teleportations and error corrections. It uses another way of efficient quantum computation with linear optical systems, and promotes nonlinear operations solely with linear optics elements.〔 The detailed descriptions below will follow the KLM scheme and subsequent improvements upon the KLM scheme.
At its root, the KLM scheme induces an effective interaction between photons by making projective measurements with photodetectors, which falls into the category of non-deterministic quantum computation. It is based on a non-linear sign shift between two qubits that uses two ancilla photons and post-selection. It is also based on the demonstrations that the probability of success of the quantum gates can be made close to one by using entangled states prepared non-deterministically and quantum teleportation with single-qubit operations Otherwise, without a high enough success rate of a single quantum gate unit, it may require an exponential amount of computing resources. Meanwhile, the KLM scheme is based on the fact that proper quantum coding can reduce the resources for obtaining accurately encoded qubits efficiently with respect to the accuracy achieved, and can make LOQC fault-tolerant for photon loss, detector inefficiency and phase decoherence. As a result, LOQC can be robustly implemented through the KLM scheme with a low enough resource requirement to suggest practical scalability, making it as promising a technology for QIP as other known implementations.


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「linear optical quantum computing」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.